How many times does the digit 9 appear in the list of all integers from 1 to 500? (The number $ 99 $, for example, is counted twice, because $9$ appears two times in it.)

Revision as of 15:57, 5 June 2020 by Stormbreaker7984 (talk | contribs) (The answer is... 100)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

How many times does the digit 9 appear in the list of all integers from 1 to 500? (The number $99$, for example, is counted twice, because $9$ appears two times in it.) The answer is.....


The easiest approach is to consider how many times 9 can appear in the units place, how many times in the tens place, and how many times in the hundreds place. If we put a 9 in the units place, there are 10 choices for the tens place and 5 choices for the hundreds digit (including 0), for a total of 50 times. Likewise, if we put a 9 in the tens place, there are 10 choices for the units place and 5 choices for the hundreds digit, for a total of 50 times. Since 9 cannot appear in the hundreds digit, there are $50+50=\boxed{100}$ appearances of the digit 9.