2020 AMC 8 Problems/Problem 19
Problem 19
A number is called flippy if its digits alternate between two distinct digits. For example, and are flippy, but and are not. How many five-digit flippy numbers are divisible by
Solution 1
To be divisible by , a number must first be divisible by and . By divisibility rules, the last digit must be either or , and the sum of the digits must be divisible by . If the last digit is , the first digit would be (because the digits alternate). So, the last digit must be , and we have We know the inverse exists because 2 is relatively prime to 3, and thus we can conclude that (or the second and fourth digits) is always a multiple of . We have 4 options: , and our answer is and ~samrocksnature