2021 April MIMC 10 Problems/Problem 24

Revision as of 16:58, 22 April 2021 by Cellsecret (talk | contribs) (Created page with "One semicircle is constructed with diameter <math>AH=4</math> and let the midpoint of <math>AH</math> be <math>M</math>. Construct a point <math>O</math> on the side of segmen...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

One semicircle is constructed with diameter $AH=4$ and let the midpoint of $AH$ be $M$. Construct a point $O$ on the side of segment $AH$ (closer to segment $AH$ than arc $AH$) such that the distance from $A$ to $O$ is $2\sqrt{5}$, and that $OM$ is perpendicular to the diameter $AH$. Three more such congruent semicircles are formed through multiple $90^{\circ}$rotations around the point $O$. Name the $6$ endpoints of the diameters $B$, $C$, $D$, $E$, $F$, $G$ in a circular direction from $A$ to $H$. Another four congruent semicircles are constructed with diameters $AB, CD, EF, GH$, and that the distance from the diameters to the point $O$ are less than the distance from the arcs to the point $O$. Connect $AC$, $CD$, $DO$, $OG$, and $GA$. Find the ratio of the area of the pentagon $ACDOG$ to the total area of the shape formed by arcs $AB$, $BC$, $CD$, $DE$, $EF$, $FG$, $GH$, $HA$.

$\textbf{(A)} ~\frac{14+10\pi}{17} \qquad\textbf{(B)} ~\frac{13+\sqrt{2}}{28} \qquad\textbf{(C)} ~\frac{4+\sqrt{2}}{7+3\pi} \qquad\textbf{(D)} ~\frac{13}{28+6\pi} \qquad\textbf{(E)} ~\frac{13}{30\pi}\qquad$

Solution

To be Released on April 26th.