Chittur Gopalakrishnavishwanathasrinivasaiyer Lemma

Revision as of 20:26, 30 April 2021 by Readyplayerone (talk | contribs) (Created page with " We know that an <math>x</math> exists that equal to <math>\text{420 mod 69}.</math> This <math>x</math> is very powerful in competition math problems. Usually coming up on JM...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
We know that an $x$ exists that equal to $\text{420 mod 69}.$ This $x$ is very powerful in competition math problems. Usually coming up on JMO and AMO geo problems. The Euler Line intersects the radical axis at $(x^n, n^x)$ where $n$ is the number of composite factors the radius has. This theorem is also used in Newton's Sums, as the $n$th root unity is the same thing as $x^n$ $\text{mod}$ $(420\cdot69^n).$ Finally, you'll se it in combo! The number ways you can shuffle $n$ things into $n^2 + nk + 1$ items where $k$ is the number of partitions in an item is the $x^{69}.$ My coach Iyer Sir approved this nice lemma.