2022 AMC 10A Problems/Problem 13

Revision as of 22:16, 11 November 2022 by MRENTHUSIASM (talk | contribs) (Created page with "==Problem== Let <math>\triangle ABC</math> be a scalene triangle. Point <math>P</math> lies on <math>\overline{BC}</math> so that <math>\overline{AP}</math> bisects <math>\an...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $\triangle ABC$ be a scalene triangle. Point $P$ lies on $\overline{BC}$ so that $\overline{AP}$ bisects $\angle BAC.$ The line through $B$ perpendicular to $\overline{AP}$ intersects the line through $A$ parallel to $\overline{BC}$ at point $D.$ Suppose $BP=2$ and $PC=3.$ What is $AD?$

$\textbf{(A) } 8 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 10 \qquad \textbf{(D) } 11 \qquad \textbf{(E) } 12$

Solution

DIAGRAM IN PROGRESS.

WILL BE DONE TOMORROW, WAIT FOR ME THANKS.

Suppose that $\overline{BD}$ intersect $\overline{AP}$ and $\overline{AC}$ at $X$ and $Y,$ respectively. By Angle-Side-Angle, we conclude that $\triangle ABX\cong\triangle AYX.$

Let $AB=AY=2x.$ By the Angle Bisector Theorem, we have $AC=3x,$ or $YC=x.$

By parallel lines, we get $\angle YAD=\angle YCB$ and $\angle YDA=\angle YBC.$ Note that $\triangle ADY \sim \triangle CBY$ by the Angle-Angle Similarity, with the ratio of similitude $\overline{AY}{CY}=2.$ It follows that $AD=2CB=2(BP+PC)=\boxed{\textbf{(C) } 10}.$

~MRENTHUSIASM

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png