2022 AMC 10A Problems/Problem 13

Revision as of 04:26, 12 November 2022 by Bxiao31415 (talk | contribs) (See Also)

Problem

Let $\triangle ABC$ be a scalene triangle. Point $P$ lies on $\overline{BC}$ so that $\overline{AP}$ bisects $\angle BAC.$ The line through $B$ perpendicular to $\overline{AP}$ intersects the line through $A$ parallel to $\overline{BC}$ at point $D.$ Suppose $BP=2$ and $PC=3.$ What is $AD?$

$\textbf{(A) } 8 \qquad \textbf{(B) } 9 \qquad \textbf{(C) } 10 \qquad \textbf{(D) } 11 \qquad \textbf{(E) } 12$

Solution

DIAGRAM IN PROGRESS.

WILL BE DONE TOMORROW, WAIT FOR ME THANKS.

Suppose that $\overline{BD}$ intersect $\overline{AP}$ and $\overline{AC}$ at $X$ and $Y,$ respectively. By Angle-Side-Angle, we conclude that $\triangle ABX\cong\triangle AYX.$

Let $AB=AY=2x.$ By the Angle Bisector Theorem, we have $AC=3x,$ or $YC=x.$

By parallel lines, we get $\angle YAD=\angle YCB$ and $\angle YDA=\angle YBC.$ Note that $\triangle ADY \sim \triangle CBY$ by the Angle-Angle Similarity, with the ratio of similitude $\frac{AY}{CY}=2.$ It follows that $AD=2CB=2(BP+PC)=\boxed{\textbf{(C) } 10}.$

~MRENTHUSIASM

Solution 2 By Omega Learn Using Similar Triangles and Angle Bisector Theorem

https://youtu.be/77JIN0iVizA

~ pi_is_3.14

Solution 3 (Cheaty solution if you are almost out of time)

Since there is only one possible value of $AD$, we assume $\angle{B}=90^{\circ}$. By the angle bisector theorem, $\frac{AB}{AC}=\frac{2}{3}$, so $AB=2\sqrt{5}$ and $AC=3\sqrt{5}$. Now observe that $\angle{BAD}=90^{\circ}$. Let the intersection of $BD$ and $AP$ be $X$. Then $\angle{ABD}=90^{\circ}-\angle{BAX}=\angle{APB}$. Consequently, \[\bigtriangleup DAB ~ \bigtriangleup ABP\] and therefore $\frac{DA}{AB} = \frac{AB}{BP}$, so $AD=\fbox{(C)10}$, and we're done!

~Bxiao31415

See Also

2022 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png