2022 AMC 10B Problems/Problem 25
Problem
Let be a sequence of numbers, where each is either 0 or 1. For each positive integer , define
Suppose for all . What is the value of the sum
Solution (Base-2 Analysis)
We solve this problem with base 2. To avoid any confusion, for a base-2 number, we index the th rightmost digit as digit .
We have .
In the base-2 representation, is equivalent to
In the rest of the analysis, to lighten notation, we ease the base-2 subscription from all numbers. The equation above can be reformulated as:
\begin{table} \begin{tabular}{ccccccccc}
& & 0 & & 0 & 0 & 0 & 0 & 0 \\ & & & & & & & & 1 \\ & & & & & & & & \\ \hline %or \bottomrule if using the `booktabs` package & & & & & & 0 & 0 & 0\\ \end{tabular}
\end{table}
Therefore, , , and for , .
Therefore,
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)