2023 AIME II Problems/Problem 6

Revision as of 16:20, 16 February 2023 by Sahanwijetunga (talk | contribs) (Created page with "==Problem == Consider the L-shaped region formed by three unit squares joined at their sides, as shown below. Two points <math>A</math> and <math>B</math> are chosen independ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Consider the L-shaped region formed by three unit squares joined at their sides, as shown below. Two points $A$ and $B$ are chosen independently and uniformly at random from inside the region. The probability that the midpoint of $\overline{AB}$ also lies inside this L-shaped region can be expressed as $\frac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$ [asy] unitsize(2cm); draw((0,0)--(2,0)--(2,1)--(1,1)--(1,2)--(0,2)--cycle); draw((0,1)--(1,1)--(1,0),dashed); [/asy]


Solution 1

We proceed by calculating the complement.

Note that the only configuration of the 2 points that makes the midpoint outside of the L shape is one point in the top square, and one in the right square. This occurs with $\frac{2}{3} \cdot \frac{1}{3}$ probability.

Let the topmost coordinate have value of: $(x_1,y_1+1)$, and rightmost value of: $(x_2+1,y_2)$.

The midpoint of them is thus: \[\left(\frac{x_1+x_2+1}{2}, \frac{y_1+y_2+1}{2} \right)\]

It is clear that $x_1, x_2, y_1, y_2$ are all between 0 and 1. For the midpoint to be outside the L-shape, both coordinates must be greater than 1, thus: \[\frac{x_1+x_2+1}{2}>1\] \[x_1+x_2>1\]

By symmetry this has probability $\frac{1}{2}$. Also by symmetry, the probability the y-coordinate works as well is $\frac{1}{2}$. Thus the probability that the midpoint is outside the L-shape is: \[\frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2}\] \[\frac{1}{18}\]

We want the probability that the point is inside the L-shape however, which is $1-\frac{1}{18}=\frac{17}{18}$, yielding the answer of $17+18=\boxed{35}$ ~SAHANWIJETUNGA