2023 USAMO Problems/Problem 2

Revision as of 12:55, 12 July 2023 by Jkmmm3 (talk | contribs) (Solution 1)

Problem 2

Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all functions $f:\mathbb{R}^{+}\rightarrow\mathbb{R}^{+}$ such that, for all $x, y \in \mathbb{R}^{+}$,\[f(xy + f(x)) = xf(y) + 2\]

Solution 1

Make the following substitutions to the equation:

1. $(x, 1) \rightarrow f(x + f(x)) = xf(1) + 2$

2. $(1, x + f(x)) \rightarrow f(x + f(x) + f(1)) = f(x + f(x)) + 2 = xf(1) + 4$

3. $(x, 1 + \frac{f(1)}{x}) \rightarrow f(x + f(x) + f(1)) = xf(1 + \frac{f(1)}{x}) + 2$

It then follows from (2) and (3) that $f(1 + \frac{f(1)}{x}) = f(1) + \frac{2}{x}$, so we know that this function is linear for $x > 1$. Substitute f(x) = ax+b and solve for a and b in the functional equation; we find that $f(x) = x + 1 \forall x > 1$.

Now, we can let $x > 1$ and $y \le 1$. Since $f(x) = x + 1$, $xy + f(x) > x > 1$, so $f(xy + f(x)) = xy + x + 2 = xf(y) + 2$. It becomes clear then that $f(y) = y + 1$ as well, so $f(x) = x + 1$ is the only solution to the functional equation.

~jkmmm3