2002 AIME I Problems/Problem 11

Revision as of 16:10, 25 September 2007 by 1=2 (talk | contribs) (Problem)

Problem

Let $ABCD$ and $BCFG$ be two faces of a cube with $AB=12$. A beam of light emanates from vertex $A$ and reflects off face $BCFG$ at point $P$, which is 7 units from $\overline{BG}$ and 5 units from $\overline{BC}$. The beam continues to be reflected off the faces of the cube. The length of the light path from the time it leaves point $A$ until it next reaches a vertex of the cube is given by $m\sqrt{n}$, where $m$ and $n$ are integers and $n$ is not divisible by the square of any prime. Find $m+n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also