2005 IMO Problems/Problem 5

Revision as of 11:21, 23 August 2020 by Pureswag (talk | contribs) (Created page with "Let <math>ABCD</math> be a fixed convex quadrilateral with <math>BC = DA</math> and <math>BC \nparallel DA</math>. Let two variable points <math>E</math> and <math>F</math> li...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $ABCD$ be a fixed convex quadrilateral with $BC = DA$ and $BC \nparallel DA$. Let two variable points $E$ and $F$ lie of the sides $BC$ and $DA$, respectively, and satisfy $BE = DF$. The lines $AC$ and $BD$ meet at $P$, the lines $BD$ and $EF$ meet at $Q$, the lines $EF$ and $AC$ meet at $R$. Prove that the circumcircles of the triangles $PQR$, as $E$ and $F$ vary, have a common point other than $P$.