Lifting the Exponent
Revision as of 18:21, 11 January 2024 by Wescarroll (talk | contribs) (Created page with "Let <math>p</math> be an odd prime, and let <math>a</math> and <math>b</math> be integers relatively prime to <math>p</math> such that <math>p \mid (a-b)</math>. Let <math>n</...")
Let be an odd prime, and let
and
be integers relatively prime to
such that
. Let
be a positive integer. Then the number of factors of
that divide
is equal to the number of factors of
that divide
plus the number of factors of
that divide
.