2024 AMC 8 Problems/Problem 1

Revision as of 17:32, 25 January 2024 by Mrthinker (talk | contribs) (Solution 2)

Problem

What is the ones digit of \[222,222-22,222-2,222-222-22-2?\] $\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8$

Solution 1

We can rewrite the expression as \[222,222-(22,222+2,222+222+22+2)\].

We note that the units digit of the addition is $0$ because all the units digits of the five numbers are $2$ and $5*2=10$, which has a units digit of $0$.

Now, we have something with a units digit of $0$ subtracted from $222,222$. The units digit of this expression is obviously $2$, and we get $\boxed{B}$ as our answer.

~ Dreamer1297

Solution 2

\[222,222-22,222-2,222-222-22-2\] \[= 200,000 - 2,222 - 222 - 22 - 2\] \[= 197778 - 222 - 22 - 2\] \[= 197556 - 22 - 2\] \[= 197534 - 2\] \[= 197532\] This means the ones digit is $\boxed{(B) \hspace{1 mm} 2}$ $\newline$ ~ nikhil ~ CXP

Solution 3

We only care about the unit's digits.

Thus, $2-2$ ends in $0$, $0-2$ ends in $8$, $8-2$ ends in $6$, $6-2$ ends in $4$, and $4-2$ ends in $\boxed{\textbf{(B) } 2}$,

~MrThinker

Video Solution 1 (easy to digest) by Power Solve

https://www.youtube.com/watch?v=HE7JjZQ6xCk

See Also

2024 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png