2024 AMC 8 Problems/Problem 16

Revision as of 17:16, 26 January 2024 by Sahanwijetunga (talk | contribs) (Solution 2)

Problem 16

Minh enters the numbers $1$ through $81$ into the cells of a $9 \times 9$ grid in some order. She calculates the product of the numbers in each row and column. What is the least number of rows and columns that could have a product divisible by $3$?

Solution

We know that if a row/column of numbers has a single multiple of $3$, that entire row/column will be divisible by $3$. Since there are $27$ multiples of $3$ from $1$ to $81$, We need to find a way to place the $54$ non-multiples of $3$ such that they take up as many entire rows and columns as possible. If we naively put in non-multiples of $3$ in $6$ rows from the top, we get $18 - 6 = 12$ rows that are multiples of $3$. However, we can improve this number by making some rows and columns intersect so that some squares help fill out both rows and columns We see that filling $7$ rows/columns would usually take $7 \times 9 = 63$ of our non-multiples, but if we do $4$ rows and $3$ columns, $12$ will intersect. With our $54$ being enough as we need only $51$ non-multiples of $3$($63$ minus the $12$ overlapped). We check to see if we can fill out one more row/column, and when that fails we conclude the final answer to be $18 - 7 = \boxed{\textbf{(D)} 11}$ -IwOwOwl253 ~andliu766(Minor edits)

Solution 2

Note you can swap/rotate any configuration of rows, such that all the rows and columns that have a product of 3 are in the top left. Hence the points are bounded by a $a \times b$ rectangle. This has $ab$ area and $a+b$ rows and columns divisible by $3$. We want $ab\ge 27$ and $a+b$ minimized.

If $ab=27$, we achieve minimum with $a+b=9+3=12$.

If $ab=28$,our best is $a+b=7+4=11$. Note if $a+b=10$, then $ab\le 25$, and hence there is no smaller answer, and we get (D) 11.

- SahanWijetunga

Video Solution 1 (easy to digest) by Power Solve

https://youtu.be/zxkL4c316vg

Video Solution 2 by OmegaLearn.org

https://youtu.be/xfiPVmuMiXs

Video Solution 3 by SpreadTheMathLove

https://www.youtube.com/watch?v=Svibu3nKB7E

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=DLzFB4EplKk