2000 IMO Problems

Revision as of 11:36, 19 April 2024 by Soviet union1917 (talk | contribs) (Problem 1)

Problem 1

Two circles $G_1$ and $G_2$ intersect at two points $M$ and $N$. Let $AB$ be the line tangent to these circles at $A$ and $B$, respectively, so that $M$ lies closer to $AB$ than $N$. Let $CD$ be the line parallel to $AB$ and passing through the point $M$, with $C$ on $G_1$ and $D$ on $G_2$. Lines $AC$ and $BD$ meet at $E$; lines $AN$ and $CD$ meet at $P$; lines $BN$ and $CD$ meet at $Q$. Show that $EP=EQ$.


Solution