Arcticturn Prep

Revision as of 19:25, 15 June 2024 by Arcticturn (talk | contribs)

Problem 5

Suppose that $x$, $y$, and $z$ are complex numbers such that $xy = -80 - 320i$, $yz = 60$, and $zx = -96 + 24i$, where $i$ $=$ $\sqrt{-1}$. Then there are real numbers $a$ and $b$ such that $x + y + z = a + bi$. Find $a^2 + b^2$.

Problem 6

A real number $a$ is chosen randomly and uniformly from the interval $[-20, 18]$. The probability that the roots of the polynomial

\[x^4 + 2ax^3 + (2a - 2)x^2 + (-4a + 3)x - 2\] are all real can be written in the form $\dfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.