2024 AMC 12A Problems/Problem 23

Revision as of 23:48, 8 November 2024 by Reda mandymath (talk | contribs)

Problem

What is the value of \[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?\]

$\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84$

Solution 1 (Trigonometric Identities)

First, notice that

\[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}\]


\[=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})\]


Here, we make use of the fact that

\[\tan^2 x+\tan^2 (\frac{\pi}{2}-x)\] \[=(\tan x+\tan (\frac{\pi}{2}-x))^2-2\] \[=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(\frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(\frac{\sin \frac{\pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2\] \[=\left(\frac{1}{\cos x \sin x}\right)^2-2\] \[=\left(\frac{2}{\sin 2x}\right)^2-2\] \[=\frac{4}{\sin^2 2x}-2\]

Hence,

\[(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})\] \[=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)\]

Note that

\[\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}\]


\[\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}\]

Hence,

\[\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)\]

\[=\left(\frac{16}{2-\sqrt{2}}-2\right)\left(\frac{16}{2+\sqrt{2}}-2\right)\]

\[=(14+8\sqrt{2})(14-8\sqrt{2})\]

\[=68\]

Therefore, the answer is $\fbox{\textbf{(B) } 68}$.

~tsun26

Solution 2 (Another Indentity)

First, notice that

\[\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}\]


\[=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})\]


Here, we make use of the fact that

\begin{align*} \tan^2 x+\tan^2 (\frac{\pi}{2}-x) &= (\tan x - \tan (\frac{\pi}{2} - x))^2 + 2\\ &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + \tan x \tan (\frac{\pi}{2} - x))^2 + 2~~~~(\mathrm{difference~of~two~tan})\\ &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + 1))^2 + 2\\ &= 4\tan^2 (\frac{\pi}{2} - 2x) + 2 \end{align*}

Hence,

\begin{align*} (\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}) &= (4\tan^2 (\frac{\pi}{2} - \frac{\pi}{16} \cdot 2) + 2)(4\tan^2 (\frac{\pi}{2} - \frac{3\pi}{16} \cdot 2) + 2)\\ &= (4\tan^2 \frac{3\pi}{8} + 2)(4\tan^2 \frac{\pi}{8} + 2)\\ &= 16\tan^2 \frac{3\pi}{8} \cdot \tan^2 \frac{\pi}{8} + 8(\tan^2 \frac{3\pi}{8} + \tan^2 \frac{\pi}{8}) + 4\\ &= 16 + 8(4\tan^2 (\frac{\pi}{2} - \frac{\pi}{8} \cdot 2) + 2) + 4\\ &= 16 + 8(4\tan^2 \frac{\pi}{4} + 2) + 4\\ &= 16 + 8(4 + 2) + 4\\ &= 68 \end{align*}

Therefore, the answer is $\fbox{\textbf{(B) } 68}$.

~reda_mandymath

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png