2003 AIME I Problems/Problem 1

Revision as of 10:48, 25 October 2006 by JBL (talk | contribs)

Problem

Given that

$\frac{((3!)!)!}{3!} = k \cdot n!,$

where $k$ and $n$ are positive integers and $n$ is as large as possible, find $k + n.$

Solution

We use the definition of a factorial to get

$\frac{((3!)!)!}{3!} = \frac{(6!)!}{3!} = \frac{720!}{3!} = \frac{720!}{6} = \frac{720 \cdot 719!}{6} = 120 \cdot 719! = k \cdot n!$

We certainly can't make $n$ any larger if $k$ is going to stay an integer, so the answer is $k + n = 120 + 719 = 839$.

See also