2003 USAMO Problems

Revision as of 05:43, 22 April 2007 by Boy Soprano II (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problems of the 2003 USAMO.

Day 1

Problem 1

Prove that for every positive integer $\displaystyle n$ there exists an $\displaystyle n$-digit number divisible by $\displaystyle 5^n$ all of whose digits are odd.

Problem 2

A convex polygon $\mathcal{P}$ in the plane is dissected into smaller convex polygons by drawing all of its diagonals. The lengths of all sides and all diagonals of the polygon $\mathcal{P}$ are rational numbers. Prove that the lengths of all sides of all polygons in the dissection are also rational numbers.

Problem 3

Let $n \neq 0$. For every sequence of integers

$A = a_0,a_1,a_2,\dots, a_n$

satisfying $0 \le a_i \le i$, for $i=0,\dots,n$, define another sequence

$t(A)= t(a_0), t(a_1), t(a_2), \dots, t(a_n)$

by setting $\displaystyle t(a_i)$ to be the number of terms in the sequence $\displaystyle A$ that precede the term $\displaystyle a_i$ and are different from $\displaystyle a_i$. Show that, starting from any sequence $\displaystyle A$ as above, fewer than $\displaystyle n$ applications of the transformation $\displaystyle t$ lead to a sequence $\displaystyle B$ such that $\displaystyle t(B) = B$.

Day 2

Problem 4

Problem 5

Problem 6

Resources