1985 AJHSME Problems/Problem 7

Revision as of 20:31, 12 January 2009 by 5849206328x (talk | contribs) (New page: ==Problem== A "stair-step" figure is made of alternating black and white squares in each row. Rows <math>1</math> through <math>4</math> are shown. All rows being and end with a white squ...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A "stair-step" figure is made of alternating black and white squares in each row. Rows $1$ through $4$ are shown. All rows being and end with a white square. The number of black squares in the $37\text{th}$ row is

[asy] draw((0,0)--(7,0)--(7,1)--(0,1)--cycle); draw((1,0)--(6,0)--(6,2)--(1,2)--cycle); draw((2,0)--(5,0)--(5,3)--(2,3)--cycle); draw((3,0)--(4,0)--(4,4)--(3,4)--cycle); fill((1,0)--(2,0)--(2,1)--(1,1)--cycle,black); fill((3,0)--(4,0)--(4,1)--(3,1)--cycle,black); fill((5,0)--(6,0)--(6,1)--(5,1)--cycle,black); fill((2,1)--(3,1)--(3,2)--(2,2)--cycle,black); fill((4,1)--(5,1)--(5,2)--(4,2)--cycle,black); fill((3,2)--(4,2)--(4,3)--(3,3)--cycle,black); [/asy]

$\text{(A)}\ 34 \qquad \text{(B)}\ 35 \qquad \text{(C)}\ 36 \qquad \text{(D)}\ 37 \qquad \text{(E)}\ 38$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1985 AJHSME Problems