1986 AJHSME Problems/Problem 5

Revision as of 17:51, 24 January 2009 by Waffle (talk | contribs)

Problem

A contest began at noon one day and ended $1000$ minutes later. At what time did the contest end?

$\text{(A)}\ \text{10:00 p.m.} \qquad \text{(B)}\ \text{midnight} \qquad \text{(C)}\ \text{2:30 a.m.} \qquad \text{(D)}\ \text{4:40 a.m.} \qquad \text{(E)}\ \text{6:40 a.m.}$

Solution

There are $60$ minutes in an hour. So, we can easily eliminate some of the choices by noting that noon is exactly $720$ minutes away from midnight. Since $720 < 1000$, we know that it cannot be A or B. Because midnight is $720$ minutes away, we know that the contest ended $1000 - 720 = 280$ minutes after midnight. The highest multiple of 60 that will fit into $280$ is $240$, which is $4 \times 60$, and the remainder is $40$ minutes, meaning that the contest ended at $4:40 a.m.$

$4:40$ is D

See Also

1986 AJHSME Problems