2001 AMC 12 Problems/Problem 13

Revision as of 23:00, 7 February 2009 by Duelist (talk | contribs) (New page: == Problem == The parabola with equation <math>p(x) = ax^2+bx+c</math> and vertex <math>(h,k)</math> is reflected about the line <math>y=k</math>. This results in the parabola with equatio...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

The parabola with equation $p(x) = ax^2+bx+c$ and vertex $(h,k)$ is reflected about the line $y=k$. This results in the parabola with equation $q(x) = dx^2+ex+f$. Which of the following equals $a+b+c+d+e+f$?

$(\mathrm{A})\ 2b \qquad (\mathrm{B})\ 2c \qquad (\mathrm{C})\ 2a+2b \qquad (\mathrm{D})\ 2h \qquad (\mathrm{E})\ 2k$

Solution

We write $p(x)$ as $a(x-h)^2+k$ (this is possible for any parabola). Then the reflection of $p(x)$ is $q(x) = -a(x-h)^2+k$. Then we find $p(x) + q(x) = 2k$. Since $p(1) = a+b+c$ and $q(1) = d+e+f$, we have $a+b+c+d+e+f = 2k$, so the answer is $\mathrm{E}$.