1988 AJHSME Problems/Problem 9

Revision as of 07:09, 15 April 2009 by 1=2 (talk | contribs) (New page: ==Problem== An isosceles triangle is a triangle with two sides of equal length. How many of the five triangles on the square grid below are isosceles? <asy> for(int a=0; a<12; ++a) { ...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

An isosceles triangle is a triangle with two sides of equal length. How many of the five triangles on the square grid below are isosceles?

[asy] for(int a=0; a<12; ++a)  {   draw((a,0)--(a,6));  } for(int b=0; b<7; ++b)  {   draw((0,b)--(11,b));  } draw((0,6)--(2,6)--(1,4)--cycle,linewidth(1)); draw((3,4)--(3,6)--(5,4)--cycle,linewidth(1)); draw((0,1)--(3,2)--(6,1)--cycle,linewidth(1)); draw((7,4)--(6,6)--(9,4)--cycle,linewidth(1)); draw((8,1)--(9,3)--(10,0)--cycle,linewidth(1)); [/asy]

$\text{(A)}\ 1 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 3 \qquad \text{(D)}\ 4 \qquad \text{(E)}\ 5$

Solution

The first triangle has two legs of length $\sqrt{2^2+1^2}$, the second has two legs of length 2, the leg lengths of the third triangle are $2$, $\sqrt{5}$, and $\sqrt{13}$, two legs of the fourth triangle have length $\sqrt{3^2+1^2}$, and two legs of the fifth triangle have length $\sqrt{1^2+2^2}$. Therefore all of the triangles in the diagram except the third are isosceles, and there are $4\Rightarrow \mathrm{(D)}$ are isosceles.

See Also

1988 AJHSME Problems