1974 USAMO Problems/Problem 2
Problem
Prove that if ,
, and
are positive real numbers, then
![$a^ab^bc^c\ge (abc)^{(a+b+c)/3}$](http://latex.artofproblemsolving.com/c/d/b/cdb94a39e3190f57fcbb1f2fbe849a6c038b66e7.png)
Solution
Taking the natural log of both sides, we obtain
![$a\ln{a}+b\ln{b}+c\ln{c}\ge \left(\frac{a+b+c}{3}\right)\ln(abc)$](http://latex.artofproblemsolving.com/b/c/7/bc763f15d16af4b6324b045d8338d22a0fc06b54.png)
It is sufficient to prove the above inequality. Consider the function .
for
; therefore, it is a convex function and we can apply Jensen's Inequality:
![$\frac{a\ln{a}+b\ln{b}+c\ln{c}}{3}\ge \left(\frac{a+b+c}{3}\right)\ln\left(\frac{a+b+c}{3}\right)$](http://latex.artofproblemsolving.com/d/b/0/db0d87edcf1329bb08f89821fd547f050f23f363.png)
Apply AM-GM to get
![$\frac{a+b+c}{3}\ge \sqrt[3]{abc}$](http://latex.artofproblemsolving.com/8/7/2/872ec383ca01e8997916c1dbaee116fee66f8130.png)
which implies
![$\frac{a\ln{a}+b\ln{b}+c\ln{c}}{3}\ge \left(\frac{a+b+c}{3}\right)\ln\left(\sqrt[3]{abc}\right)$](http://latex.artofproblemsolving.com/d/a/3/da34b15dd7c8d75509c763b00ecc8f379c8cbd22.png)
which is equivalent to the desired inequality.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Mathlinks Discussions
- Simple Olympiad Inequality
- Hard inequality
- Inequality
- Some q's on usamo write ups
- ineq
- exponents (generalization)
1974 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |