2008 AMC 12B Problems/Problem 13

Revision as of 12:33, 30 May 2011 by Btilm305 (talk | contribs) (need solution)

This problem needs a solution. If you have a solution for it, please help us out by adding it.

Problem

Vertex $E$ of equilateral $\triangle{ABC}$ is in the interior of unit square $ABCD$. Let $R$ be the region consisting of all points inside $ABCD$ and outside $\triangle{ABC}$ whose distance from $AD$ is between $\frac{1}{3}$ and $\frac{2}{3}$. What is the area of $R$?

$\textbf{(A)}\ \frac{12-5\sqrt3}{72} \qquad \textbf{(B)}\ \frac{12-5\sqrt3}{36} \qquad \textbf{(C)}\ \frac{\sqrt3}{18} \qquad \textbf{(D)}\ \frac{3-\sqrt3}{9} \qquad \textbf{(E)}\ \frac{\sqrt3}{12}$