2011 AMC 10B Problems/Problem 13

Revision as of 19:44, 25 May 2011 by Gina (talk | contribs) (Created page with '== Problem 13 == Two real numbers are selected independently at random from the interval <math>[-20, 10]</math>. What is the probability that the product of those numbers is gre…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 13

Two real numbers are selected independently at random from the interval $[-20, 10]$. What is the probability that the product of those numbers is greater than zero?

$\textbf{(A)}\ \frac{1}{9} \qquad\textbf{(B)}\ \frac{1}{3} \qquad\textbf{(C)}\ \frac{4}{9} \qquad\textbf{(D)}\ \frac{5}{9} \qquad\textbf{(E)}\ \frac{2}{3}$

Solution

For the product of two numbers to be greater than zero, they either have to both be negative or both be positive. The interval for a positive number is $\frac{1}{3}$ of the total interval, and the interval for a negative number is $\frac{2}{3}$. Therefore, the probability the product is greater than zero is \[\frac{1}{3} \times \frac{1}{3} + \frac{2}{3} \times \frac{2}{3} = \frac{1}{9} + \frac{4}{9} = \boxed{\textbf{(D)} \frac{5}{9}}\]