2000 AMC 8 Problems/Problem 13

Revision as of 19:46, 28 July 2011 by Mrdavid445 (talk | contribs) (Created page with "In triangle <math>CAT</math>, we have <math> \angle ACT =\angle ATC </math> and <math> \angle CAT = 36^\circ </math>. If <math> \overline{TR} </math> bisects \angle ATC <math>, ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In triangle $CAT$, we have $\angle ACT =\angle ATC$ and $\angle CAT = 36^\circ$. If $\overline{TR}$ bisects \angle ATC $, then$ \angle CRT = $

[asy] pair A,C,T,R; C = (0,0); T = (2,0); A = (1,sqrt(5+sqrt(20))); R = (3/2 - sqrt(5)/2,1.175570); draw(C--A--T--cycle); draw(T--R); label("$A$",A,N); label("$T$",T,SE); label("$C$",C,SW); label("$R$",R,NW);[/asy]

$\text{(A)}\ 36^\circ\qquad\text{(B)}\ 54^\circ\qquad\text{(C)}\ 72^\circ\qquad\text{(D)}\ 90^\circ\qquad\text{(E)}\ 108^\circ$