Mock AIME II 2012 Problems

Revision as of 23:54, 4 April 2012 by Testingtesting (talk | contribs) (Created page with "==Problem 1== Given that <cmath>\left(\dfrac{6^2-1}{6^2+11}\right)\left(\dfrac{7^2-2}{7^2+12}\right)\left(\dfrac{8^2-3}{8^2+13}\right)\cdots\left(\dfrac{2012^2-2007}{2012^2+2017}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 1

Given that \[\left(\dfrac{6^2-1}{6^2+11}\right)\left(\dfrac{7^2-2}{7^2+12}\right)\left(\dfrac{8^2-3}{8^2+13}\right)\cdots\left(\dfrac{2012^2-2007}{2012^2+2017}\right)=\dfrac{m}{n},\] where $m$ and $n$ are positive relatively prime integers, find the remainder when $m+n$ is divided by $1000$.

Solution