2013 AMC 10A Problems/Problem 19

Revision as of 20:20, 7 February 2013 by Countingkg (talk | contribs) (Created page with "==Problem== In base <math>10</math>, the number <math>2013</math> ends in the digit <math>3</math>. In base <math>9</math>, on the other hand, the same number is written as <ma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In base $10$, the number $2013$ ends in the digit $3$. In base $9$, on the other hand, the same number is written as $(2676)_{9}$ and ends in the digit $6$. For how many digits $b$ does the base-$b$-representation of $2013$ end in the digit $3$?


$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 9\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 16\qquad\textbf{(E)}\ 18$

Solution