2014 AMC 12A Problems/Problem 12

Revision as of 23:30, 11 February 2014 by Kevin38017 (talk | contribs)

Problem

Two circles intersect at points $A$ and $B$. The minor arcs $AB$ measure $30^\circ$ on one circle and $60^\circ$ on the other circle. What is the ratio of the area of the larger circle to the area of the smaller circle?

$\textbf{(A) }2\qquad \textbf{(B) }1+\sqrt3\qquad \textbf{(C) }3\qquad \textbf{(D) }2+\sqrt3\qquad \textbf{(E) }4\qquad$

Solution 1

Let the radius of the larger and smaller circles be $x$ and $y$, respectively. Also, let their centers be $O_1$ and $O_2$, respectively. Then the ratio we need to find is \[\dfrac{\pi x^2}{\pi y^2} = \dfrac{x^2}{y^2}\] Draw the radii from the centers of the circles to $A$ and $B$. We can easily conclude that the $30^{\circ}$ belongs to the larger circle, and the $60$ degree arc belongs to the smaller circle. Therefore, $m\angle AO_1B = 30^{\circ}$ and $m\angle AO_2B = 60^{\circ}$. Note that $\Delta AO_2B$ is equilateral, so when chord AB is drawn, it has length $y$. Now, applying the Law of Cosines on $\Delta AO_1B$: \[y^2 = x^2 + x^2 - 2x^2\cos{30} = 2x^2 - x^2\sqrt{3} = (2 - \sqrt{3})x^2\] \[\dfrac{x^2}{y^2} = \dfrac{1}{2 - \sqrt{3}} = \dfrac{2 + \sqrt{3}}{4-3} = 2 + \sqrt{3}=\boxed{\textbf{(D)}}\] (Solution by brandbest1)

Solution 2

Again, let the radius of the larger and smaller circles be $x$ and $y$, respectively, and let the centers of these circles be $O_1$ and $O_2$, respectively. Let $X$ bisect segment $AB$. Note that $\triangle AXO_1$ and $\triangle AXO_2$ are right triangles, with $\angle AO_1X=15^{\circ}$ and $\angle AO_2X=30^{\circ}$. We have $\sin{15} = \dfrac{AX}{x}$ and $\sin{30} = \dfrac{AX}{y}$ and $\dfrac{x}{y} = \dfrac{\sin{30}}{\sin{15}}$. Since the ratio of the area of the larger circle to that of the smaller circle is simply $\dfrac{\pi x^2}{\pi y^2} = \left(\dfrac{x}{y} \right)^2 = \left(\dfrac{\sin{30}}{\sin{15}} \right)^2$, we just need to find $\sin{30}$ and $\sin{15}$. We know $sin{30} = \dfrac{1}{2}$, and we can use the angle sum formula or half angle formula to compute $\sin{15} = \dfrac{\sqrt{6} - \sqrt{2}}{4}$. Plugging this into the previous expression, we get: \[\left(\dfrac {x}{y} \right)^2 = \left(\dfrac{1/2}{\dfrac{\sqrt{6} - \sqrt{2}}{4}} \right)^2 = \left(\dfrac{\sqrt{6} + \sqrt{2}}{2} \right)^2 = 2 + \sqrt{3} =\boxed{\textbf{(D)}}\] (Solution by kevin38017)

See Also

2014 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png