2014 AMC 12B Problems/Problem 20

Revision as of 18:46, 20 February 2014 by Kevin38017 (talk | contribs)

Problem

For how many positive integers $x$ is $\log_{10}(x-40) + \log_{10}(60-x) < 2$ ?

$\textbf{(A) }10\qquad \textbf{(B) }18\qquad \textbf{(C) }19\qquad \textbf{(D) }20\qquad \textbf{(E) }$ infinitely many$\qquad$

Solution

The domain of the LHS implies that \[40<x<60\] Begin from the left hand side \[\log_{10}[(x-40)(60-x)]<2\] \[-x^2+100x-2500<0\] \[(x-50)^2>0\] \[x \not = 50\] Hence, we have integers from 41 to 49 and 51 to 59. There are $\boxed{\textbf{(B)} 18}$ integers.