1988 AIME Problems/Problem 14
Problem
Let be the graph of
, and denote by
the reflection of
in the line
. Let the equation of
be written in the form
Find the product .
Solution 1
Given a point on
, we look to find a formula for
on
. Both points lie on a line that is perpendicular to
, so the slope of
is
. Thus
. Also, the midpoint of
,
, lies on the line
. Therefore
.
Solving these two equations, we find and
. Substituting these points into the equation of
, we get
, which when expanded becomes
.
Thus, .
Solution 2
The asymptotes of are given by
and
. Now if we represent the line
by the complex number
, then we find the direction of the reflection of the asymptote
by multiplying this by
, getting
. Therefore, the asymptotes of
are given by
and
.
Now to find the equation of the hyperbola, we multiply the two expressions together to get one side of the equation: . At this point, the right hand side of the equation will be determined by plugging the point
, which is unchanged by the reflection, into the expression. But this is not necessary. We see that
,
, so
.
Solution 3
The matrix for a reflection about the polar line is:
This is not hard to derive using a basic knowledge of linear transformations. You can refer here for more information: https://en.wikipedia.org/wiki/Orthogonal_matrix
Let . Then
, so
and
.
Therefore, if
is mapped to
under the reflection, then
and
. Since the transformation matrix represents a reflection, it must be its own inverse; therefore,
and
.
The original coordinates must satisfy
. Therefore,
Thus,
and
, so
. The answer is
.
See also
1988 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.