1980 USAMO Problems
Problems from the 1980 USAMO.
Problem 1
A balance has unequal arms and pans of unequal weight. It is used to weigh three objects. The first object balances against a weight , when placed in the left pan and against a weight , when placed in the right pan. The corresponding weights for the second object are and . The third object balances against a weight , when placed in the left pan. What is its true weight?
Problem 2
Find the maximum possible number of three term arithmetic progressions in a monotone sequence of distinct reals.
Problem 3
is an integral multiple of . and are real numbers. If $x\sin(A)+y\sin(B)+z\sin(C)\=x^2\sin(2A)+y^2\sin(2B)+z^2\sin(2C)=0$ (Error compiling LaTeX. Unknown error_msg), show that for any positive integer .
Problem 4
The insphere of a tetrahedron touches each face at its centroid. Show that the tetrahedron is regular.
Problem 5
If are reals such that , show that
See Also
1980 USAMO (Problems • Resources) | ||
Preceded by 1979 USAMO |
Followed by 1981 USAMO | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.