2016 AIME I Problems/Problem 6
Problem
In let
be the center of the inscribed circle, and let the bisector of
intersect
at
. The line through
and
intersects the circumscribed circle of
at the two points
and
. If
and
, then
, where
and
are relatively prime positive integers. Find
.
Solution
Solution 1
It is well known that and so we have
. Then
and so
and from the angle bisector theorem
so
and our answer is
Solution 2
This is a cheap solution.
WLOG assume is isosceles. Then,
is the midpoint of
, and
. Draw the perpendicular from
to
, and let it meet
at
. Since
,
is also
(they are both inradii). Set
as
. Then, triangles
and
are similar, and
. Thus,
.
, so
. Thus
. Solving for
, we have:
, or
.
is positive, so
. As a result,
and the answer is
Solution 3
WLOG assume is isosceles (with vertex
). Let
be the center of the circumcircle,
the circumradius, and
the inradius. A simple sketch will reveal that
must also be obtuse (as an acute triangle will result in
being greater than
) and that
and
are collinear. Next, if
,
and
. Euler gives us that
, and in this case,
. Thus,
. Solving for
, we have
, then
, yielding
. Next,
so
. Finally,
gives us
, and
. Our answer is then
.
See also
2016 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.