2017 AMC 12A Problems/Problem 7

Revision as of 15:02, 8 February 2017 by EricF (talk | contribs)

Problem

Define a function on the positive integers recursively by $f(1) = 2$, $f(n) = f(n-1) + 2$ if $n$ is even, and $f(n) = f(n-2) + 2$ if $n$ is odd and greater than $1$. What is $f(2017)$?

$\textbf{(A)}\ 2017 \qquad\textbf{(B)}\ 2018 \qquad\textbf{(C)}\ 4034 \qquad\textbf{(D)}\ 4035 \qquad\textbf{(E)}\ 4036$

This is a recursive function, which means the function is used to evaluate itself. To solve this, we must identify the base case, $f(1)=2$. We also know that when $n$ is odd, $f(n)=f(n-2)+2$. Thus we know that $f(2017)=f(2015)+2$. Thus we know that n will always be odd in the recursion of $f(2017)$, and we add two each recursive cycle, which there are 1008 of. Thus the answer is $1008*2+2=2018$ $\boxed{\textbf{(B)}}$