2017 AIME II Problems
Find the number of subsets of that are subsets of neither nor .
The number of subsets of a set with elements is . The total number of subsets of is equal to . The number of sets that are subsets of at least one of or can be found using complimentary counting. There are subsets of and subsets of . It is easy to make the mistake of assuming there are sets that are subsets of at least one of or , but the subsets of are overcounted. There are sets that are subsets of at least one of or , so there are subsets of that are subsets of neither nor . .
Theams , , , and are in the playoffs. In the semifinal matches, plays , and plays . The winners of those two matches will play each other in the final match to determine the champion. When plays , the probability that wins is , and the outcomes of all the matches are independent. The probability that will be the champion is , where and are relatively prime positive integers. Find .
There are two scenarios in which wins. The first scenario is where beats , beats , and beats , and the second scenario is where beats , beats , and beats . Consider the first scenario. The probability beats is , the probability beats is , and the probability beats is . Therefore the first scenario happens with probability . Consider the second scenario. The probability beats is , the probability beats is , and the probability beats is . Therefore the second scenario happens with probability . By summing these two probabilities, the probability that wins is . Because this expression is equal to , the answer is .
A triangle has vertices , , and . The probability that a randomly chosen point inside the triangle is closer to vertex than to either vertex or vertex can be written as , where and are relatively prime positive integers. Find .
[asy] pair A,B,C,D,X,Z,P; A=(0,0); B=(12,0); C=(8,10); X=(10,5); Z=(6,0); P=(6,3.4); fill(B--X--P--Z--cycle,lightgray); draw(A--B--C--cycle); dot(A); label("",A,SW); dot(B); label("",B,SE); dot(C); label("",C,N); draw(X--P,dashed); draw(Z--P,dashed); dot(X); label("",X,NE); dot(Z); label("",Z,S); dot(P); label("",P,NW); [/asy] A diagram is above. The set of all points closer to point than to point lie to the right of the perpendicular bisector of (line in the diagram), and the set of all points closer to point than to point lie below the perpendicular bisector of (line in the diagram). Therefore, the set of points inside the triangle that are closer to than to either vertex or vertex is bounded by quadrilateral . Because is the midpoint of and is the midpoint of , and . The coordinates of point is the solution to the system of equations defined by lines and . Using the point-slope form of a linear equation and the fact that the slope of the line perpendicular to a line with slope is , the equation for line is and the equation for line is . The solution of this system is . Using the shoelace formula on quadrilateral and triangle , the area of quadrilateral is and the area of triangle is . Finally, the probability that a randomly chosen point inside the triangle is closer to vertex than to vertex or vertex is the ratio of the area of quadrilateral to the area of , which is . The answer is .
Find the number of positive integers less than or equal to whose base-three representation contains no digit equal to .
The base- representation of is . Because any -digit base- number that starts with and has no digit equal to must be greater than , all -digit numbers that have no digit equal to must start with or in base . Of the base- numbers that have no digit equal to , there are -digit numbers that start with , -digit numbers that start with , -digit numbers, -digit numbers, -digit numbers, -digit numbers, -digit numbers, and -digit numbers. Summing these up, the answer is .
A set contains four numbers. The six pairwise sums of distinct elements of the set, in no particular order, are , , , , , and . Find the greatest possible value of .
Let these four numbers be , , , and , where . needs to be maximized, so let and because these are the two largest pairwise sums. Now needs to be maximized. Notice . No matter how the numbers , , , and are assigned to the values , , , and , the sum will always be . Therefore we need to maximize . The maximum value of is achieved when we let and be and because these are the two largest pairwise sums besides and . Therefore, the maximum possible value of .
Find the sum of all positive integers such that is an integer.
Manipulating the given expression, . The expression under the radical must be an square number for the entire expression to be an integer, so . Rearranging, . By difference of squares, . It is easy to check that those are all the factor pairs of 843. Considering each factor pair separately, is found to be and . The two values of that satisfy one of the equations are and . Summing these together, the answer is .
Find the number of integer values of in the closed interval for which the equation has exactly one real solution.
Find the number of positive integers less than such that is an integer.
A special deck of cards contains cards, each labeled with a number from to and colored with one of seven solors. Each number-color combination appears on exactly one card. Sharon will select a set of eight cards from the deck at random. Given that she gets at least one card of each color and at least one cardf with each number, the probability that Sharon can discard one of her cards and have at least one card of each color and at least one card with each number if , where and are relatively prime positive integers. Find .
Rectangle has side lengths and . Point is the midpoint of , point is the trisection point of closer to , and point is the intersection of and . Point lies on the quadrilateral , and bisects the area of . Find the area of .
Five towns are connected by a system of raods. There is exactly one road connecting each pair of towns. Find the number of ways there are to make all the roads one-way in such a way that it is still possible to get from any town to any other town using the roads (possibly passing through other towns on the way).
Circle has radius , and the point is a point on the circle. Circle has radius and is internally tangent to at point . Point lies on circle so that is located counterclockwise from on . Circle has radius and is internally tangent to at point . In this way a sequence of circles and a sequence of points on the circles are constructed, where circle has radius and is internally tangent to circle at point , and point lies on counterclockwise from point , as shown in the figure below. There is one point inside all of these circles. When , the distance from the center to is , where and are relatively prime positive integers. Find . [asy] draw(Circle((0,0),125)); draw(Circle((25,0),100)); draw(Circle((25,20),80)); draw(Circle((9,20),64)); dot((125,0)); label("",(125,0),E); dot((25,100)); label("",(25,100),SE); dot((-55,20)); label("",(-55,20),E); [/asy]
For each integer , let be the number of -element subsets of the vertices of the regular -gon that are the vertices of an isosceles triangle (including equilateral triangles). Find the sum of all values of such that .
A grid of points consists of all points in space of the form , where , , and are integers between and , inclusive. Find the number of different lines that contain exactly of these points.
Tetrahedron has , , and . For any point in space, define . The least possible value of can be expressed as , where and are positive integers, and is not divisible by the square of any prime. Find .