1983 AHSME Problems/Problem 18
Problem:
Let be a polynomial function such that, for all real
,
For all real
,
is
(A) (B)
(C)
(D)
(E) none of these
Solution:
Let . Then
, so we can write the given equation as
\begin{align*}
f(y) &= x^4 + 5x^2 + 3 \\
&= (x^2)^2 + 5x^2 + 3 \\
&= (y - 1)^2 + 5(y - 1) + 3 \\
&= y^2 - 2y + 1 + 5y - 5 + 3 \\
&= y^2 + 3y - 1.
\end{align*}
Then substituting
, we get
\begin{align*}
f(x^2 - 1) &= (x^2 - 1)^2 + 3(x^2 - 1) - 1 \\
&= x^4 - 2x^2 + 1 + 3x^2 - 3 - 1 \\
&= \boxed{x^4 + x^2 - 3}.
\end{align*}
The answer is (B).