1983 AHSME Problems/Problem 4

Revision as of 23:00, 1 September 2017 by Hexananny (talk | contribs)

[asy] pair A, B, C, D, E, F; A = (0, 1.732); B = (0.5, 0.866); C = (0,0); D = (1, 0); E = (1.5, 0.866); F = (1, 1.732); draw(A--B--C--D--E--F--A); label("A", A, A); label("B", (0.3, 0.866)); label("C", (-0.1, 0)); label("D", D, D); label("E", E, E); label("F", F, F); draw(B--D, dashed+linewidth(0.5)); draw(B--E, dashed+linewidth(0.5)); draw(B--F, dashed+linewidth(0.5)); [/asy]

Drawing the diagram as described, we create a convex hexagon with all side lengths equal to 1. In this case, it is a natural approach to divide the figure up into four equilateral triangles. The area, A, of one such equilateral triangle is $\frac{\sqrt{3}}{4}$, which gives a total of $4\left(\frac{\sqrt{3}}{4}\right) = \sqrt{3}$, or $\boxed{D}$.