2017 AMC 8 Problems/Problem 6

Revision as of 13:53, 22 November 2017 by Topnotchmath (talk | contribs) (Created page with "==Problem 6== If the degree measures of the angles of a triangle are in the ratio <math>3:3:4</math>, what is the degree measure of the largest angle of the triangle? <math>...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 6

If the degree measures of the angles of a triangle are in the ratio $3:3:4$, what is the degree measure of the largest angle of the triangle?

$\textbf{(A) }18\qquad\textbf{(B) }36\qquad\textbf{(C) }60\qquad\textbf{(D) }72\qquad\textbf{(E) }90$


Solution

The sum of the ratios is $10$. Since the sum of the angles of a triangle is $180^{\circ}$, the ratio can be scaled up to $54:54:72$. The numbers in the ratio $54:54:72$ represent the angles of the triangle. We want the largest, so the answer is $\boxed{\textbf{(D) }72}$