2005 AMC 10A Problems/Problem 11

Revision as of 19:16, 1 August 2006 by Xantos C. Guin (talk | contribs) (added problem and solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

A wooden cube $n$ units on a side is painted red on all six faces and then cut into $n^3$ unit cubes. Exactly one-fourth of the total number of faces of the unit cubes are red. What is $n$?

$\mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 4\qquad \mathrm{(C) \ } 5\qquad \mathrm{(D) \ } 6\qquad \mathrm{(E) \ } 7$

Solution

Since there are $n^2$ faces on each face of the wooden cube, there are $6n^2$ faces painted red.

Since each unit cube has $6$ faces, there are $6n^3$ faces.

Since one-fourth of the faces are painted red,

$\frac{6n^2}{6n^3}=\frac{1}{4}$

$\frac{1}{n}=\frac{1}{4}$

$n=4\Rightarrow B$

See Also