2019 AMC 12B Problems/Problem 21

Revision as of 16:25, 14 February 2019 by Luckystars (talk | contribs) (Problem)

Problem

How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients? (For clarification: If the polynomial is $ax^2+bx+c,a\neq 0,$ and the roots are $r$ and $s,$ then the requirement is that $\{a,b,c\}=\{r,s\}$.)

$\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } \text{infinitely many}$

Solution

See Also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions