Talk:Gmaas

Revision as of 16:02, 26 February 2019 by Idefix (talk | contribs)

Follow the following steps to summon Gmaas:

1. Draw a circle and circumscribe it with a regular hexagon.

2. Write the numerical value of $17^{36}$ along the edge of the circle.

3. Write the numerical value of $33^{29}$ along the edge of the hexagon.

4. Write the numerical value of $cot(0)$ 5 centimeters above the hexagon.

5. Write the numerical value of $\tan(\frac{\pi}{2})$ 5 centimeters below the hexagon.

6. Write the numerical value of $\ln(0)$ inside the circle.

7. Write the numerical value of the melting point of water inside the circle. Include units and write 15 significant digits.

8. Write the numerical value of the gravitational constant inside the circle. Include units and write 25 significant digits.

9. Carry the paper with the circle and hexagon in your hand.

10. Travel at the speed of light with that paper and Gmaas will be summoned.

EDIT: The author congratulates the previous editor for his research on the cutting edge of Gmaasology. He/she has been awarded the Nobel Prize in Gmaasology for his discovery. However, the aforementioned summoning has several problems: it does not specify the dimensions of the hexagon or the circle; the fact that it has to be drawn on a paper; the size of the paper; the pressure of the water being melted; whwther $\frac{\pi}{2}$ radians, degrees, or gradians; the exact location if the value of $17^{36}$ and $33^{29}$ in the diagram and the base those numbers should be written in; the units of the melting point of water or the units of the gravitational constant; or the location where Gmaas will be summoned. He might be summoned on the other side of the universe.