Euler's Four-Square Identity

Revision as of 08:08, 29 March 2019 by Lilcritters (talk | contribs) (Proof)

Identity

The Four-Square Identity, credited to Leonhard Euler, states that for any eight complex numbers $x_1,x_2, x_3, x_4, y_1, y_2, y_3, y_4$, we must have \[(x_1^2+ x_2^2 + x_3 ^2 + x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2)\] \[=(x_1y_1+x_2y_2+x_3y_3+x_4y_4)^2\] \[+(x_1y_2-x_2y_1+x_3y_4-x_4y_3)^2\] \[+(x_1y_3-x_3y_1+x_4y_2-x_2y_4)^2\] \[+(x_1y_4-x_4y_1 + x_2y_3 - x_3y_2)^2.\]

Proof

First, let us expand the left-hand side of the identity: \[(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_2^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_3^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2) + x_4^2 \cdot (y_1^2+y_2^2+y_3^2+y_4^2)\] \[= x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2 + x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2 + x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2 + x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2.\] Thus, we have \[(x_1^2+x_2^2+x_3^2+x_4^2)(y_1^2+y_2^2+y_3^2+y_4^2) = x_1^2 y_1^2 + x_1^2 y_2^2 + x_1^2 y_3^2 + x_1^2 y_4^2\] \[+ x_2^2 y_1^2 + x_2^2 y_2^2 + x_2^2 y_3^2 + x_2^2 y_4^2\] \[+ x_3^2 y_1^2 + x_3^2 y_2^2 + x_3^2 y_3^2 + x_3^2 y_4^2\] \[+ x_4^2 y_1^2 + x_4^2 y_2^2 + x_4^2 y_3^2 + x_4^2 y_4^2. \text{           (1)}\]

Now,