2020 AMC 10B Problems/Problem 3

Revision as of 15:53, 7 February 2020 by Quacker88 (talk | contribs) (Solution 1)

Problem 3

The ratio of $w$ to $x$ is $4:3$, the ratio of $y$ to $z$ is $3:2$, and the ratio of $z$ to $x$ is $1:6$. What is the ratio of $w$ to $y$?

$\textbf{(A)}\ 4:3 \qquad\textbf{(B)}\ 3:2 \qquad\textbf{(C)}\  8:3 \qquad\textbf{(D)}\ 4:1 \qquad\textbf{(E)}\ 16:3$

Solution 1

WLOG, let $w=4$ and $x=3$.

Since the ratio of $z$ to $x$ is $1:6$, we can substitute in the value of $x$ to get $\frac{z}{3}=\frac{1}{6} \implies z=\frac{1}{2}$.

The ratio of $y$ to $z$ is $3:2$, so $\frac{y}{\frac{1}{2}}=\frac{3}{2} \implies y=\frac{3}{4}$.

The ratio of $w$ to $y$ is then $\frac{4}{\frac{3}{4}}=\frac{16}{3}$ so our answer is $\boxed{\textbf{(E)}\ 16:3}$ ~quacker88

Solution 2

We need to somehow link all three of the ratios together. We can start by connecting the last two ratios together by multiplying the last ratio by two.

$z:x=1:6=2:12$, and since $y:z=3:2$, we can link them together to get $y:z:x=3:2:12$.

Finally, since $x:w=3:4=12:16$, we can link this again to get: $y:z:x:w=3:2:12:16$, so $w:y = \boxed{\textbf{(E)}\ 16:3}$ ~quacker88