2019 IMO Problems/Problem 6
Problem
Let I be the incentre of acute triangle ABC with AB ̸= AC. The incircle ω of ABC is tangent to sides BC, CA, and AB at D, E, and F, respectively. The line through D perpendicular to EF meets ω again at R. Line AR meets ω again at P. The circumcircles of triangles PCE and PBF meet again at Q. Prove that lines DI and PQ meet on the line through A perpendicular to AI.