1987 AIME Problems/Problem 8

Revision as of 13:15, 11 February 2007 by Azjps (talk | contribs) (solution)

Problem

What is the largest positive integer $\displaystyle n$ for which there is a unique integer $\displaystyle k$ such that $\displaystyle \frac{8}{15} < \frac{n}{n + k} < \frac{7}{13}$?

Solution

Multiplying out all of the denominators, we get:

$104(n+k) < 195n < 105(n+k)$
$0 < 91n - 104k < n + k$

Since $91n - 104k < n + k$, $k > \frac{6}{7}n$. Also, $0 < 91n - 104k$, so $k < \frac{7n}{8}$. Thus, $48n < 56k < 49n$. $k$ is unique if it is within a maximum range of 112, so $n = 112$.

See also

1987 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions