1997 AIME Problems/Problem 14
Problem
Let and
be distinct, randomly chosen roots of the equation
. Let
be the probability that
, where
and
are relatively prime positive integers. Find
.
Solution
The solution requires the use of Euler's formula:
If , where k is any constant, the equation reduces to:
$\begin{eqnarray*}
e^{2\pi ik}&=&\cos(2\pi k)+i\sin(2\pi k)\\
&=&1+0i\\
&=&1+0\\
&=&1\\
z^{1997}-1&=&0\\
z^{1997}&=&1\\
z^{1997}&=&e^{2\pi ik}\\
z&=&e^{\frac{2\pi ik}{1997}}
\end{eqnarray*}<math>
== See also ==
- [[1997 AIME Problems]]$ (Error compiling LaTeX. Unknown error_msg)