1972 AHSME Problems/Problem 10

Revision as of 20:56, 28 January 2021 by Coolmath34 (talk | contribs) (Created page with "== Problem == For <math>x</math> real, the inequality <math>1\le |x-2|\le 7</math> is equivalent to <math>\textbf{(A) }x\le 1\text{ or }x\ge 3\qquad \textbf{(B) }1\le x\le...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

For $x$ real, the inequality $1\le |x-2|\le 7$ is equivalent to

$\textbf{(A) }x\le 1\text{ or }x\ge 3\qquad \textbf{(B) }1\le x\le 3\qquad \textbf{(C) }-5\le x\le 9\qquad \\ \textbf{(D) }-5\le x\le 1\text{ or }3\le x\le 9\qquad  \textbf{(E) }-6\le x\le 1\text{ or }3\le x\le 10$

Solution

We can split the inequality into two smaller inequalities and solve them individually. \[|x-2| \ge 1 \quad \rightarrow \quad x \ge 3 \quad \text{and} \quad x \le 1\] \[|x-2| \le 7 \quad \rightarrow \quad x \le 9 \quad \text{and} \quad x \ge -5\]

Combining these inequalities, we get $x \in [-5, 1] \cup [3, 9].$

The answer is $\textbf{(D)}.$

-edited by coolmath34