2021 AIME I Problems/Problem 13

Revision as of 16:48, 11 March 2021 by Sugar rush (talk | contribs)

Problem

Circles $\omega_1$ and $\omega_2$ with radii $961$ and $625$, respectively, intersect at distinct points $A$ and $B$. A third circle $\omega$ is externally tangent to both $\omega_1$ and $\omega_2$. Suppose line $AB$ intersects $\omega$ at two points $P$ and $Q$ such that the measure of minor arc $\widehat{PQ}$ is $120^{\circ}$. What is the distance between the centers of $\omega_1$ and $\omega_2$?

Solution by pad

Let $O_i$ and $r_i$ be the center and radius $\omega_i$, and let $O$ and $r$ be the center and radius of $\omega$.

Since $\overline{AB}$ extends to an arc with arc $120^\circ$, the distance from $O$ to $\overline{AB}$ is $r/2$. Let $X=\overline{AB}\cap \overline{O_1O_2}$. Consider $\triangle OO_1O_2$. The line $\overline{AB}$ is perpendicular to $\overline{O_1O_2}$ and passes through $X$. Let $H$ be the foot from $O$ to $\overline{O_1O_2}$; so $HX=r/2$. We have by tangency $OO_1=r+r_1$ and $OO_2=r+r_2$. Let $O_1O_2=d$. [asy] unitsize(3cm); pointpen=black; pointfontpen=fontsize(9);

pair A=dir(110), B=dir(230), C=dir(310);


DPA(A--B--C--A);


pair H = foot(A, B, C); draw(A--H); pair X = 0.3*B + 0.7*C; pair Y = A+X-H; draw(X--1.3*Y-0.3*X); draw(A--Y, dotted);

pair R1 = 1.3*X-0.3*Y; pair R2 = 0.7*X+0.3*Y; draw(R1--X);


D("O",A,dir(A)); D("O_1",B,dir(B)); D("O_2",C,dir(C)); D("H",H,dir(270)); D("X",X,dir(225)); D("A",R1,dir(180)); D("B",R2,dir(180));

draw(rightanglemark(Y,X,C,3));


[/asy] Since $X$ is on the radical axis of $\omega_1$ and $\omega_2$, it has equal power, so \[O_1X^2 - r_1^2 = O_2X^2-r_2^2 \implies O_1X-O_2X = \frac{r_1^2-r_2^2}{d}\]since $O_1X+O_2X=d$. Now we can solve for $O_1X$ and $O_2X$, and in particular, O1H=O1XHX=d+r12r22d2r2O2H=O2X+HX=dr12r22d2+r2.We want to solve for $d$. By the Pythagorean Theorem (twice): OH2=O2H2(r+r2)2=O1H2(r+r1)2(d+rr12r22d)24(r+r2)2=(dr+r12r22d)24(r+r1)22dr2(r12r2)28rr24r22=2dr+2(r12r22)8rr14r124dr=8rr28rr1d=2r22r1.Therefore, $d=2(r_2-r_1) = 2(961-625)=\boxed{672}$.

See also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png