User:Geometry285

Revision as of 18:27, 11 May 2021 by Geometry285 (talk | contribs)

Posting here until I find a place for an upcoming mock I’m creating

Template:G285 Mock Problems

Problem 1

What value of $x$ minimizes $|||2^{|x^2|} - 4|-4|-8|$?

$\textbf{(A)}\ -2\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 1\qquad\textbf{(E)}\ 2$

Solution

Problem 2

Suppose the set $S$ denotes $S = \{1,2,3,4 \cdots n\}$. Then, a subset of length $1<k<n$ is chosen. All even digits in the subset $k$ are then are put into group $k_1$, and the odd digits are put in $k_2$. Then, one number is selected at random from either $k_1$ or $k_2$ with equal chances. What is the probability that the number selected is a perfect square, given $n=4$?

$\textbf{(A)}\ \frac{1}{2}\qquad\textbf{(B)}\ \frac{3}{11}\qquad\textbf{(C)}\ \frac{6}{11}\qquad\textbf{(D)}\ \frac{7}{13}\qquad\textbf{(E)}\ \frac{3}{5}$

Solution

Problem 3

Let $ABCD$ be a unit square. If points $E$ and $F$ are chosen on $AB$ and $CD$ respectively such that the area of $\triangle AEF = \frac{3}{2} \triangle CFE$. What is $EF^2$?

$\textbf{(A)}\ \frac{13}{9}\qquad\textbf{(B)}\ \frac{8}{9}\qquad\textbf{(C)}\ \frac{37}{36}\qquad\textbf{(D)}\ \frac{5}{4}\qquad\textbf{(E)}\ \frac{13}{36}$

Solution

Problem 4

What is the smallest value of $k$ for which \[2^{18k} \equiv 76 \mod 100\]

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20$

Solution